Workshop Solutions to Sections 2.1 and 2.2

1) Find the domain of the function $f(x) = 9 - x^2$. Solution:	2) Find the range of the function $f(x) = 9 - x^2$. Solution:
Since $f(x)$ is a polynomial, then	$R_f = (-\infty, 9]$
$D_f = \mathbb{R} = (-\infty, \infty)$	ng (3,)]
$D_f = \mathbb{R} = (\infty, \infty)$	
Note: The domain of any polynomial is $\mathbb R$.	
3) Find the domain of the function $f(x) = 6 - 2x$.	4) Find the range of the function $f(x) = 6 - 2x$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	Since $f(x)$ is a polynomial of degree one (i. e. is of an odd
$D_f = \mathbb{R} = (-\infty, \infty)$	degree), then
,	$R_f = \mathbb{R} = (-\infty, \infty)$
5) Find the domain of the function $f(x) = x^2 - 2x - 3$.	$R_f = \mathbb{R} = (-\infty, \infty)$ 6) Find the domain of the function $f(x) = 1 + 2x^3 - x^5$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	Since $f(x)$ is a polynomial, then
	$D_f = \mathbb{R} = (-\infty, \infty)$
$D_f = \mathbb{R} = (-\infty, \infty)$ 7) Find the domain of the function $f(x) = 5$.	8) Find the range of the function $f(x) = 5$.
Solution:	Solution: $f(x) = 3$.
Since $f(x)$ is a polynomial, then	$R_f = \{5\}$
	$n_f = (0)$
$D_f = \mathbb{R} = (-\infty, \infty)$ 9) Find the domain of the function $f(x) = x - 1 $.	10) Find the domain of the function $f(x) = x + 5 $.
Solution:	Solution:
Since $f(x)$ is an absolute value of a polynomial, then	Since $f(x)$ is an absolute value of a polynomial, then
$D_f = \mathbb{R} = (-\infty, \infty)$	$D_f = \mathbb{R} = (-\infty, \infty)$
Note: The domain of an absolute value of any polynomial	
is $\mathbb R$.	
11) Find the domain of the function $f(x) = x $.	12) Find the range of the function $f(x) = x $.
Solution:	Solution:
Since $f(x)$ is an absolute value of a polynomial, then	$R_f = [0, \infty)$
$D_f = \mathbb{R} = (-\infty, \infty)$, , ,
, , , , ,	Note: Till Color I Color
	Note: The range of an absolute value of any polynomial
	is always $[0,\infty)$.
13) Find the domain of the function $f(x) = 3x - 6 $.	14) Find the domain of the function $f(x) = 9 - 3x $.
Solution:	Solution:
Since $f(x)$ is an absolute value of a polynomial, then	Since $f(x)$ is an absolute value of a polynomial, then
$D_f = \mathbb{R} = (-\infty, \infty)$	$D_f = \mathbb{R} = (-\infty, \infty)$
15) Find the domain of the function	16) Find the domain of the function
$f(x) = \frac{x+2}{x-3}$	$f(x) = \frac{x-2}{x+3}$
,, -	77
Solution:	Solution:
$f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$f(x)$ is defined when $x + 3 \neq 0 \implies x \neq -3$. So,
$D_f = \mathbb{R} \setminus \{3\} = (-\infty, 3) \cup (3, \infty)$	$D_f = \mathbb{R} \setminus \{-3\} = (-\infty, -3) \cup (-3, \infty)$
	ļ .

17	Find	the	domain	of the	function
1/	, i iiiu	uic	uullialli	טו נווכ	TUTICLIOT

$$f(x) = \frac{x+2}{x^2-9}$$

Solution:

f(x) is defined when $x^2 - 9 \neq 0 \implies x^2 \neq 9 \implies x \neq \pm 3$.

$$D_f = \mathbb{R} \setminus \{-3,3\} = (-\infty, -3) \cup (-3,3) \cup (3,\infty)$$

Solution:

f(x) is defined when $x^2 - 5x + 6 \neq 0$ \Rightarrow $(x-2)(x-3) \neq 0 \Rightarrow x \neq 2 \text{ or } x \neq 3.$ So,

$$D_f = \mathbb{R} \setminus \{2,3\} = (-\infty,2) \cup (2,3) \cup (3,\infty)$$
 20) Find the domain of the function

 $f(x) = \frac{x+2}{x^2 - 5x + 6}$

19) Find the domain of the function

$$f(x) = \frac{x+2}{x^2 - x - 6}$$

Solution:

f(x) is defined when $x^2 - x - 6 \neq 0$ \Rightarrow $(x+2)(x-3) \neq 0 \Rightarrow x \neq -2 \text{ or } x \neq 3$. So,

$$D_f = \mathbb{R} \setminus \{-2,3\} = (-\infty, -2) \cup (-2,3) \cup (3,\infty)$$
 21) Find the domain of the function

18) Find the domain of the function

$$f(x) = \frac{x+2}{x^2+9}$$

Solution:

f(x) is defined when $x^2 + 9 \neq 0$ but for any value x the denominator $x^2 + 9$ cannot be 0. So,

$$D_f = \mathbb{R} = (-\infty, \infty)$$
 22) Find the domain of the function

$$f(x) = \sqrt[3]{x-3}$$

Solution:

$$D_f = \mathbb{R} = (-\infty, \infty)$$

$$f(x) = \sqrt{x-3}$$

Note: The domain of an odd root of any polynomial

Solution:

f(x) is defined when $x - 3 \ge 0 \implies x \ge 3$ because f(x)is an even root. So,

$$D_f = [3, \infty)$$

23) Find the domain of the function

$$f(x) = \sqrt{3-x}$$

Solution:

f(x) is defined when $3 - x \ge 0 \implies -x \ge -3 \implies x \le 3$ because f(x) is an even root. So,

$$D_c = (-\infty, 3)$$

24) Find the domain of the function

 $D_f = [-3, \infty)$ 26) Find the range of the function

f(x) is an even root. So,

$$f(x) = \sqrt{x+3}$$

f(x) is defined when $x + 3 \ge 0 \implies x \ge -3$ because

 $D_f = (-\infty, 3]$ 25) Find the domain of the function

$$f(x) = \sqrt{-x}$$

Solution:

f(x) is defined when $-x \ge 0 \implies x \le 0$ because f(x) is an even root. So.

$$f(x) = \sqrt{-x}$$

$$D_f=(-\infty,0]$$

Solution:

Solution:

$$R_f = [0, \infty)$$

27) Find the domain of the function

$$f(x) = \sqrt{9 - x^2}$$

Note: The range of an even root is always ≥ 0 . 28) Find the domain of the function

30) Find the domain of the function

$$f(x) = \frac{x+2}{\sqrt{x-3}}$$

Solution:

f(x) is defined when $9 - x^2 \ge 0 \implies -x^2 \ge -9 \implies$ $x^2 < 9 \implies \sqrt{x^2} < \sqrt{9} \implies |x| < 3 \implies -3 < x < 3$.

Solution:

f(x) is defined when $x-3>0 \implies x>3$. So, $D_f = (3, \infty)$

 $D_f = [-3,3]$ 29) Find the domain of the function

$$f(x) = \frac{x+2}{\sqrt{9-x^2}}$$

Solution:

f(x) is defined when $x^2 - 9 \ge 0 \implies x^2 > 9$

 $\Rightarrow \sqrt{x^2} \ge \sqrt{9} \Rightarrow |x| \ge 3 \Rightarrow x \ge 3 \text{ or } x \le -3.$

 $f(x) = \sqrt{x^2 - 9}$

 $D_f = (-3,3)$

 $D_f = (-\infty, -3] \cup [3, \infty)$

Solution:

f(x) is defined when $9 - x^2 > 0 \implies -x^2 > -9$ $\Rightarrow x^2 < 9 \Rightarrow \sqrt{x^2} < \sqrt{9} \Rightarrow |x| < 3 \Rightarrow -3 < x < 3$.

31) Find the range of the function $f(x) = \sqrt{x^2 - 9}$ Solution: $f(x) = \frac{x + 2}{\sqrt{x^2 - 9}}$	
$f(x) = \sqrt{x^2 - 9}$ $f(x) = \frac{x + 2}{x + 2}$	
Solution: $\sqrt{x^2-9}$	
$R_f = [0, \infty)$ Solution:	
$f(x)$ is defined when $x^2 - 9 > 0 \implies x^2 > 9$	
$\Rightarrow \sqrt{x^2} > \sqrt{9} \Rightarrow x > 3 \Rightarrow x > 3 \text{ or } x < 3$	3 - 3.
So,	
$D_f = (-\infty, -3) \cup (3, \infty)$	
33) Find the domain of the function 34) Find the domain of the function	
$f(x) = \sqrt{9 + x^2}$ $f(x) = \sqrt[4]{x^2 - 25}$	
Solution: Solution:	
$f(x)$ is defined when $9 + x^2 \ge 0$ but it is always true for $f(x)$ is defined when $x^2 - 25 \ge 0 \implies x^2 \ge 25$	
any value x . So, $\Rightarrow \sqrt{x^2} \ge \sqrt{25} \Rightarrow x \ge 5 \Rightarrow x \ge 5 \text{ or } x \le 5$	≦ −5 .
$D_f = \mathbb{R}$ So,	
$D_f = (-\infty, -5] \cup [5, \infty)$ 35) Find the domain of the function 36) Find the range of the function	
$f(x) = \sqrt[6]{16 - x^2}$ $f(x) = \sqrt{16 - x^2}$	
Solution: Solution:	
$f(x)$ is defined when $16 - x^2 \ge 0 \implies -x^2 \ge -16 \implies$ We know that $f(x)$ is defined when $16 - x^2 \ge 0$	
$\begin{vmatrix} x^2 \le 16 \implies \sqrt{x^2} \le \sqrt{16} \implies x \le 4 \implies -4 \le x \le 4. \qquad \implies -x^2 \ge -16 \implies x^2 \le 16 \implies \sqrt{x^2} \le \sqrt{16}$	1
So, $\Rightarrow x \le 4 \Rightarrow -4 \le x \le 4$. So,	
$D_f = [-4,4]$ $D_f = [-4,4]$	
Using D_f we find the outputs vary from 0 to 4 . He	nce,
$R_f = [0,4]$	
37) Find the domain of the function 38) Find the domain of the function	
$f(x) = \frac{x + x }{x}$ $f(x) = \begin{cases} -\frac{1}{x}, & x < 0 \\ x, & x > 0 \end{cases}$	
Solution:	
$f(x)$ is defined when $x \neq 0$. So,	
$D_f=\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,\infty)$ It is clear from the definition of the function $f(x)$ that	t
$D_f = \mathbb{R} = (-\infty, \infty)$	
39) Find the domain of the function 40) Find the domain of the function	
$f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$	
$f(x) = \frac{1}{\sqrt{x^2 + 1}}$ Solution:	
Solution: $f(x)$ is defined when	
$f(x)$ is defined when $1-x-1\geq 0 \implies x\geq 1 \implies D_{\sqrt{x-1}}=[1,\infty)$	
$1- x \ge 0 \Rightarrow D_{\sqrt{x}} = [0, \infty)$ $2- x + 3 \ge 0 \Rightarrow x \ge -3 \Rightarrow D_{\sqrt{x+3}} = [-3, \infty)$	
2- $x^2 + 1 > 0$ but this is always true for all x Hence,	,
$\Rightarrow D_{\sqrt{x^2+1}} = \mathbb{R}.$ $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$	o)
Hence,	
$D_f = D_{\sqrt{x}} \cap D_{\sqrt{x^2+1}} = [0, \infty) \cap \mathbb{R} = [0, \infty)$ 41) The function $f(x) = 3x^4 + x^2 + 1$ is a polynomial 42) The function $f(x) = 5x^3 + x^2 + 7$ is a cubic function	
	ction.
function. 43) The function $f(x) = -3x^2 + 7$ is a quadratic 44) The function $f(x) = 2x + 3$ is a linear function.	
43) The function $f(x) = -3x^2 + 7$ is a quadratic function. 44) The function $f(x) = 2x + 3$ is a linear function.	
45) The function $f(x) = x^7$ is a power function 46) The function $f(x) = x^7$ is a power function	
45) The function $f(x) = x^7$ is a power function. 46) The function $f(x) = \frac{2x+3}{x^2-1}$ is a rational function.	
45) The function $f(x) = x^7$ is a power function. 46) The function $f(x) = \frac{2x+3}{x^2-1}$ is a rational function. 47) The function $f(x) = \frac{x-3}{x+2}$ is a rational function and we 48) The function $f(x) = \sin x$ is a trigonometric function.	ction.

49) The function $f(x) = e^x$ is a natural exponential function.	50) The function $f(x) = 3^x$ is a general exponential function.
51) The function $f(x) = x^2 + \sqrt{x-2}$ is an algebraic function.	52) The function $f(x) = -3$ is a constant function.
53) The function $f(x) = \log_3 x$ is a general logarithmic function.	54) The function $f(x) = \ln x$ is a natural logarithmic function.
55) The function $f(x) = 3x^4 + x^2 + 1$ is	56) The function $f(x) = 9 - x^2$ is
Solution:	Solution:
$f(-x) = 3(-x)^4 + (-x)^2 + 1 = 3x^4 + x^2 + 1 = f(x)$	$f(-x) = 9 - (-x)^2 = 9 - x^2 = f(x)$
Hence,	Hence,
f(x) is an even function.	f(x) is an even function.
57) The function $f(x) = x^5 - x$ is	58) The function $f(x) = 2 - \sqrt[5]{x}$ is
Solution:	Solution:
$f(-x) = (-x)^5 - (-x) = -x^5 + x$	$f(-x) = 2 - \sqrt[5]{(-x)} = 2 - \sqrt[5]{-x} = 2 + \sqrt[5]{x}$
$= -(x^5 - x) = -f(x)$	$=-(-2-\sqrt[5]{x})$
Hence,	Hence,
f(x) is an odd function.	1
	f(x) is neither even nor odd.
59) The function $f(x) = 3x + \frac{2}{\sqrt{x^2+9}}$ is	60) The function $f(x) = \frac{3}{\sqrt{x^2+9}}$ is
Solution:	Solution:
2 2	
$f(-x) = 3(-x) + \frac{2}{\sqrt{(-x)^2 + 9}} = -3x + \frac{2}{\sqrt{x^2 + 9}}$	$f(-x) = \frac{3}{\sqrt{(-x)^2 + 9}} = \frac{3}{\sqrt{x^2 + 9}} = f(x)$
	V(x) 13 12
$=-\left(3x-\frac{2}{\sqrt{x^2+9}}\right)$	Hence,
· VX 1 3	f(x) is an even function.
Hence,	
f(x) is neither even nor odd.	
61) The function $f(x) = \sqrt{4 + x^2}$ is	62) The function $f(x) = 3$ is
Solution:	Solution:
$f(-x) = \sqrt{4 + (-x)^2} = \sqrt{4 + x^2} = f(x)$	Since the graph of the constant function 3 is symmetric
	about the $y-axis$, then
Hence,	f(x) is an even function.
f(x) is an even function.	
63) The function $f(x) = \frac{9-x^2}{x-2}$ is	64) The function $f(x) = \frac{x^2 - 4}{x^2 + 1}$ is
Solution:	Solution:
$f(-x) = \frac{9 - (-x)^2}{(-x) - 2} = \frac{9 - x^2}{-x - 2}$	$f(-x) = \frac{(-x)^2 - 4}{(-x)^2 + 1} = \frac{x^2 - 4}{x^2 + 1} = f(x)$
` '	
$=-\left(\frac{9-\chi^2}{\chi+2}\right)$	Hence,
(x+2)	f(x) is an even function.
Hence,	
f(x) is neither even nor odd.	
65) The function $f(x) = 3 x $ is	66) The function $f(x) = x^{-2}$ is
Solution:	Solution:
f(-x) = 3 (-x) = 3 x = f(x)	1
Hence,	$f(x) = x^{-2} = \frac{1}{x^2}$
f(x) is an even function.	
j (λ) is an even function.	$f(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2} = f(x)$
	Hence, $f(x)$ is an even function.
	Hence, $f(x)$ is an even function.

67) The function $f(x) = x^3 - 2x + 5$ is Solution: $f(-x) = (-x)^3 - 2(-x) + 5 = -x^3 + 2x + 5$ $= -(x^3 - 2x - 5)$ Hence,	68) The function $f(x) = \sqrt[3]{x^5} - x^3 + x$ is Solution: $f(-x) = \sqrt[3]{(-x)^5} - (-x)^3 + (-x) = -\sqrt[3]{x^5} + x^3 - x$ $= -\left(\sqrt[3]{x^5} - x^3 + x\right) = -f(x)$
f(x) is neither even nor odd.	Hence, $f(x)$ is an odd function.
69) The function $f(x) = 7$ is Solution: Since the graph of the constant function 7 is symmetric about the $y - axis$, then	70) The function $f(x) = \frac{x^3 - 4}{x^3 + 1}$ is Solution: $f(-x) = \frac{(-x)^3 - 4}{(-x)^3 + 1} = \frac{-x^3 - 4}{-x^3 + 1} = -\frac{x^3 + 4}{-x^3 + 1}$
f(x) is an even function.	Hence, $f(x)$ is neither even nor odd.
71) The function $f(x) = \frac{x^2 - 1}{x^3 + 3}$ is Solution: $f(-x) = \frac{(-x)^2 - 1}{(-x)^3 + 3} = \frac{x^2 - 1}{-x^3 + 3} = -\frac{x^2 - 1}{x^3 - 3}$ Hence, $f(x)$ is neither even nor odd.	72) The function $f(x) = x^6 - 4x^2 + 1$ is Solution: $f(-x) = (-x)^6 - 4(-x)^2 + 1 = x^6 - 4x^2 + 1 = f(x)$ Hence, $f(x)$ is an even function.
73) The function $f(x) = x^2$ is increasing on $(0, \infty)$.	74) The function $f(x) = x^2$ is decreasing on $(-\infty, 0)$.
75) The function $f(x) = x^3$ is increasing on $(-\infty, \infty)$.	76) The function $f(x) = x^3$ is not decreasing at all.
77) The function $f(x) = \sqrt{x}$ is increasing on $(0, \infty)$.	78) The function $f(x) = \sqrt{x}$ is not decreasing at all.
79) The function $f(x) = \frac{1}{x}$ is not increasing at all.	80) The function $f(x) = \frac{1}{x}$ is decreasing on $(-\infty, \infty)$.